Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam

Middle East & Africa

CHINT-EGEMAC
South Africa
UAE

Europe

Italy
Spain
Turkey
Kazakhstan

North America

Mexico

Latin America

Brazil
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
South Africa
UAE
Italy
Spain
Turkey
Kazakhstan
Mexico
Brazil
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

MCCB vs ACB: What Are the Differences?

JANUARY 9, 2025

Table of Contents

  1. Molded Case Circuit Breaker: Overview
  2. Air Circuit Breaker: Overview
  3. MCCB vs ACB: Key Differences
  4. Conclusion

Circuit breakers serve a crucial function. They rapidly stop faulty electric currents to prevent costly damage to equipment. Their designs differ depending on intended use and load capacities. Two common categories are Molded Case Circuit Breakers and Air Circuit Breakers. Though each disconnects power during problems, they have unique attributes. These make one better than the other for a given installation or application. Therefore, it’s useful for installers to know the main MCCB vs ACB contrasts to pick the right solution.

Molded Case Circuit Breaker: Overview

An MCCB is a low-voltage circuit breaker. It’s used to protect wiring and electrical equipment. It interrupts electric circuits automatically when excess current is detected. In this way, it prevents equipment damage from overloads or short circuits.

Components

Key components of an MCCB include terminals that connect wires, an operating mechanism, and trip units that sense overloads. The operating mechanism uses a bimetal strip. It bends when it heats up from excess current. This trips the contacts open to stop power flow.

Working Principle

When a trip unit of a molded case circuit breaker detects a sustained overload or short circuit downline, it activates the internal operating mechanism. This causes the separable contacts inside the MCCB to rapidly separate. It occurs in less than one second, interrupting the electric current passing through. This fast interruption prevents prolonged overloading from causing permanent damage to wiring or devices on the protected circuit.

Air Circuit Breaker: Overview

An ACB is a type of circuit breaker used for protecting higher-voltage systems. It typically employs pressurized air or insulating gases to instantly interrupt tripping circuits within milliseconds.

Components

Key components of an air circuit breaker include a set of high-speed separable contacts. These are enclosed in a dielectric chamber. The contacts are pneumatically operated by a mechanism. The mechanism controls compressed air which is usually kept in an insulated vessel.

Working Principle

When an electrical fault is detected, the trip unit of the ACB instantly triggers the operating mechanism. This prompts the controlled release of stored compressed gas. The blast of gas forces the separable contacts apart. It breaks the current flow through the ACB. Disconnection happens exceedingly fast due to the swift discharge of gas, within milliseconds.

MCCB vs ACB: Key Differences

MCCBs and ACBs serve important functions but have some key distinguishing characteristics in their design and application. Key attributes that highlight the differences include:

1. Ratings

ACBs typically have higher ampere ratings. They can go up to 6,300A and are suitable for larger loads in industrial settings. MCCBs are rated for relatively lower amps generally up to 3,200A. They are used in residential and commercial sites for distribution panels and secondary circuit protection.

2. Size

Size is another major MCCB vs ACB distinction. Due to their higher ratings, ACBs have larger sizes and dimensions. This is to ensure they safely handle heavier electrical loads over long periods. MCCBs are more compactly designed and smaller to conveniently fit in residential and smaller commercial electrical panels.

3. Application

MCCBs are generally used in distribution panels located in homes, small offices, and retail buildings to protect branch circuits. ACBs are usually found in large industrial facilities. This includes factories and manufacturing plants, utility substations, and other high-current applications requiring primary protection.

4. Cost

Cost is another major MCCB vs ACB difference. ACBs tend to cost more than comparably rated MCCBs. This is due to their more intricate and complex construction. Their higher ampere ratings also contribute to increased prices in industrial and utility-grade equipment.

5. Maintenance

ACB maintenance requires periodic servicing of gas tanks, seals, and pneumatic components. This is more labor-intensive. MCCB maintenance is simpler as it operates mechanically without gases. So, these circuit breakers require only basic inspections and switch replacement if faulty.

The following table summarizes the main MCCB vs ACB differences:

Attribute

MCCB

ACB

Ratings

Lower amps

Higher amps for industrial loads

Size

More compact

Larger to handle heavier loads

Application

Commercial and residential buildings

Industrial plants and substations

Cost

Lower cost

Higher cost due to complex design

Maintenance

Simple, mechanical

May require gas servicing

Conclusion

Both MCCBs and ACBs serve crucial roles in electrical protection. MCCBs are suitable for distribution and circuit protection in commercial/residential applications. ACBs are designed for heavy-load industrial applications handling higher voltages and currents. At CHINT, we manufacture reliable MCCBs and ACBs through rigorous testing. Our products boast advanced features and components to effectively protect infrastructure from faults. We aim to simplify power protection through our diverse product portfolio.

The Latest
MARCH 5, 2025 Guide to Air Circuit Breaker Maintenance

This guide discovers essential inspection, cleaning, and testing procedures of the air circuit breaker to prevent failures and extend equipment lifespan.

FEBRUARY 26, 2025 The Basics of NVF2L Compact Micro Drive

NVF2L Compact Micro Drive is designed to meet the growing demand for efficient, space-saving solutions in various industrial applications. Explore CHINT's industrial drive technology solutions.

FEBRUARY 21, 2025 Key Differences Between Air Insulated Substations and Gas Insulated Substations

Common types of switchgear used in substations are AIS and GIS. This article will assess the primary difference between AIS and GIS substations for five critical aspects.

FEBRUARY 20, 2025 Fuses vs Circuit Breakers: Pros and Cons You Need to Know

Discover the key differences between fuses and circuit breakers, their pros and cons, and which is best for your electrical needs.

FEBRUARY 18, 2025 How to Install NWK1-G Reactive Power Compensation Controller

This guide explores the precise installation steps of NWK1-G Reactive Power Compensation Controller.

FEBRUARY 18, 2025 How to Install NXJ Miniature Power Relay

This comprehensive guide provides an installation guide and aims to help you ensure optimal functionality and longevity of your NXJ device.

FEBRUARY 18, 2025 How to Install NVF2G Series Variable Frequency Drives

This guide explores the installation process of the NVF2G Variable Frequency Drive in detail.

FEBRUARY 17, 2025 How to Install NXR-38 Thermal Overload Relay

This guide provides thorough instructions for installing, commissioning, operating, and troubleshooting the NXR-38 relay.

FEBRUARY 17, 2025 How to Install NH40 Switch Disconnector

This guide navigates the complete installation process of NH40 Switch Disconnector.

FEBRUARY 14, 2025 How to Install NXZB Automatic Transfer Switch Equipment

This article provides step-by-step guidance to help ensure the successful installation of the NXZB Automatic Transfer Switch Equipment.