Please enter keywords to search

Global |EN

Choose your country & Language

Asia Pacific

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam

West Asia and Africa

CHINT-EGEMAC
South Africa
UAE

Europe

Italy
Spain
Turkey

North America

Mexico

Latin America

Brazil
Peru

Choose your country & Language

Australia & New Zealand
India
Indonesia
Korea
Malaysia
Singapore (Sunlight)
Vietnam
CHINT-EGEMAC
South Africa
UAE
Italy
Spain
Turkey
Mexico
Brazil
Peru

Please enter keywords to search

Your search term contains restricted words. Please use different keywords.

What is a Surge Protective Device (SPD)?

JULY 12, 2024

Overvoltage can occur due to many reasons. These include lightning strikes and switching on/off large electrical loads. This can cause problems like busted electronics or fires if the safety gear fails. A surge protective device, also called an SPD, is extremely useful when it comes to this. It adds important protection from high-voltage power spikes that regular circuit breakers can’t handle. By shunting excess energy to the ground, SPDs aim to keep sensitive electronics safe from the dangers of overvoltage.

SPD: Components and Working Principle

A surge protective device has several key components. These include:

 

  • Metal Oxide Varistors (MOVs): These are ceramic-based components that change their resistance depending on the voltage applied to them. When the applied voltage increases, the resistance lowers.

  • Fuses: Fuses protect MOVs from excessive current during a surge.

  • Indicator Lights: These show the real-time status of the surge protective device working conditions.

The working principle of a surge protective device is straightforward. When a surge enters through the power lines, the MOVs immediately lower their resistance and thus raise their conductivity levels. In this way, they shunt most of the current to the earth’s ground before it reaches protected devices downstream. The diverted surge is harmlessly reduced before equipment is exposed to high voltage or current spikes.

What is a Surge Protective Device (SPD) 20240712 2
What is a Surge Protective Device (SPD) 20240712 2
What is a Surge Protective Device (SPD)-20240712-2
Key specifications provide important ratings that define an SPD’s performance capabilities. These include:
 
Specifications
Meaning
In
In is the nominal discharge current rating that the spike protector is designed to continuously carry without damage. In is tested using 8/20 µs current wave shape.
Imax
Imax stands for maximum discharge current rating. This indicates the maximum short-duration current pulse that the surge protective device is tested to discharge. Imax is tested using 8/20 µs current wave shape.
Iimp
Iimp refers to impulse current rating. It specifies the maximum current the SPD can withstand, similar to Imax. But Iimp is tested using 10/350 µs current wave shape.
Up
Up refers to the maximum continuous operating voltage rating of the surge arrester at In. This is the voltage protection level. It is defined as the maximum voltage that can be present across the SPD terminals when it is active.
Uc
Uc denotes maximum continuous operating voltage. It specifies the highest voltage the surge protector can experience across its terminals during normal use. After this limit, there’s a risk of performance degradation or potential failure due to overvoltage conditions.

Understanding the different types of surge protective devices is key to selecting the most suitable protection for various system needs. Three main types include:

Type 1 SPD

Type 1 SPDs are intended to protect electrical devices against direct lightning stroke. They should pass IEC 61643-11 Class I tests and are tested using 10/350 µs current waves.

Type 2 SPD

When lightning strikes near the overhead power lines, it generates an electromagnetic field and causes a voltage surge. Type 2 SPDs are intended to protect electrical installations against such indirect lightning strokes. Type 2 SPD units should pass IEC 61643-11 Class II tests and are tested using 8/20 µs current waves.

Type 3 SPD

Types 3 SPDs have a lower discharge capacity. They are intended to provide further protection for electrical installations, especially sensitive loads. Type 3 units should pass IEC 61643-11 Class III tests and should be tested using 1.2/50 µs voltage waves and 8/20 µs current waves.

Cautions When Installing SPD

Proper installation is crucial for SPDs to provide effective surge protection. Cautions when installing a surge protective device include:

 

  • The SPD must be installed in parallel directly before circuits or devices to allow the diversion of surge current around sensitive equipment.
  • Connection wire lengths for the SPD in the switchboard should not exceed 0.5 meters.
  • Relying on a Type 1 surge protector alone may be insufficient for effectively discharging high-energy currents and limiting overvoltages. Adding a Type 2 or Type 3 surge protector is recommended.
  • All installation work must be performed by certified electricians in compliance with local electrical codes to ensure proper grounding and unit mounting.

Conclusion

In summary, a surge protective device plays an important protective role for electronics across various industrial and commercial applications. By installing the properly rated and certified SPD, equipment owners gain a robust defense against power anomalies outside of standard circuit breaker capabilities. At CHINT, we design and manufacture reliable SPD solutions for almost any installation need. Visit our website to learn more about our company and browse our full offerings of surge protection products.

The Latest
DECEMBER 25, 2024 Understand the Applications of Graphene in Electromagnetic Relays

This article gives a comprehensive introduction to graphene surface treatment technology and how it empowers CHINT electromagnetic relays.

DECEMBER 24, 2024 How Distributed Energy Storage Empowers Business

Discover how distributed energy storage empowers businesses by reducing electricity costs, enhancing reliability, and supporting sustainability with CHINT’s comprehensive solutions.

NOVEMBER 28, 2024 DC Meter: Principles, Technology, and Applications

This article will explore the working principles of DC meters, their technical composition, and the applications in various scenarios.

NOVEMBER 26, 2024 Beyond the Basics: Smart Circuit Breakers for Intelligent Protection

Smart circuit breakers are a solution for the needs of today’s world. This article explores the advantages of these intelligent devices and more.

NOVEMBER 5, 2024 Can I Use General Miniature Circuit Breaker (MCB) for PV?

Miniature circuit breakers are widely adopted. They are used for branch circuit protection in many electrical systems. However, as solar photovoltaic technology continues to expand rapidly, one question arises: Can I use a general miniature circuit breaker for PV?

NOVEMBER 5, 2024 Top 3 Pain Points of Data Center Operations

In today’s digital age, data centers have become critical infrastructure. They enable our increasingly online lives and economies. They store massive amounts of data and power cloud services and applications.

SEPTEMBER 10, 2024 A Complete Guide to LV Distribution Board

LV distribution boards, part of the electrical distribution system, securely distribute low-voltage power to facility circuits.

SEPTEMBER 9, 2024 A Guide to Ring Main Units (RMU) in Wind Power Industry

An RMU, or ring main unit, is a type of medium-voltage switchgear. It consists of one or more circuit-breaker units with associated disconnectors, earthing switches, and instrument transformers.

SEPTEMBER 9, 2024 How to Choose a House Distribution Box

A well-chosen distribution box ensures the safety and efficiency of your household electrical system. This article guides you through selecting a distribution box.

SEPTEMBER 9, 2024 How Does a Variable Frequency Drive Work?

This article discusses in detail how a variable frequency drive works. Its working generally includes rectification, filtration, and inversion.